光電器件是在微電子技術(shù)基礎(chǔ)上發(fā)展起來(lái)的一種實(shí)現(xiàn)光與電之間相互轉(zhuǎn)換的器件,其**是各種光電材料,即能夠?qū)崿F(xiàn)光電信息的接收、傳輸、轉(zhuǎn)換、監(jiān)測(cè)、存儲(chǔ)、調(diào)制、處理和顯示等功能的材料。光電傳感器件指的是能夠?qū)δ撤N特征量進(jìn)行感知或探測(cè)的光電器件,狹義上*指可將特征光信號(hào)轉(zhuǎn)換為電信號(hào)進(jìn)行探測(cè)的器件,廣義而言,任何可將被測(cè)對(duì)象的特征轉(zhuǎn)換為相應(yīng)光信號(hào)的變化、并將光信號(hào)轉(zhuǎn)換為電信號(hào)進(jìn)行檢測(cè)、探測(cè)的器件都可稱(chēng)之為光電傳感器。修復(fù)石墨烯片層上的缺陷,可以提高石墨烯微片的碳含量和在導(dǎo)電、導(dǎo)熱等方面的性能。浙江開(kāi)發(fā)氧化石墨
隨著材料領(lǐng)域的擴(kuò)張,人們對(duì)于材料的功能性需求更為嚴(yán)苛,迫切需要在交通運(yùn)輸、建筑材料、能量存儲(chǔ)與轉(zhuǎn)化等領(lǐng)域應(yīng)用性質(zhì)更加優(yōu)良的材料出現(xiàn),石墨烯以優(yōu)異的聲、光、熱、電、力等性質(zhì)成為各新型材料領(lǐng)域追求的目標(biāo),作為前驅(qū)體的GO以其靈活的物理化學(xué)性質(zhì)、可規(guī)?;苽涞奶攸c(diǎn)更成為應(yīng)用基礎(chǔ)研究的熱電。雖然GO具有諸多特性,但是由于范德華作用以及π-π作用等強(qiáng)相互作用力,使GO之間很容易在不同體系中發(fā)生團(tuán)聚,其在納米尺度上表現(xiàn)的優(yōu)異性能隨著GO片層的聚集的降低直至消失,極大地阻礙了GO的進(jìn)一步應(yīng)用。無(wú)污染氧化石墨粉體氧化石墨烯表面的-OH和-COOH等官能團(tuán)含有孤對(duì)電子。
近年來(lái)研究者發(fā)現(xiàn)石墨烯由于它獨(dú)特的零帶隙結(jié)構(gòu),對(duì)所有波段的光都無(wú)選擇性的吸收,且具有超快的恢復(fù)時(shí)間和較高的損傷閾值。因此利用石墨烯獨(dú)特的非線性可飽和吸收特性將其制作成可飽和吸收體應(yīng)用于調(diào)Q摻鉺光纖激光器、被動(dòng)鎖模光纖激光器已經(jīng)成為超快脈沖激光器研究領(lǐng)域的熱點(diǎn)。2009年,Bao等[82]人使用單層石墨烯作為鎖模光纖激光器的可飽和吸收體首先實(shí)現(xiàn)了通信波段的超短孤子脈沖輸出,脈沖寬度達(dá)到了756fs。他們證實(shí)了由于泡利阻塞原理,零帶隙材料石墨烯在強(qiáng)激光激發(fā)下可以容易的實(shí)現(xiàn)可飽和吸收,而且這種可飽和吸收是與頻率不相關(guān)的,即石墨烯作為可飽和吸收體可實(shí)現(xiàn)對(duì)所有波長(zhǎng)的光都有可飽和吸收作用。
與石墨烯量子點(diǎn)類(lèi)似,氧化石墨烯量子點(diǎn)也具備一些特殊的性質(zhì)。當(dāng)GO片徑達(dá)到若干納米量級(jí)的時(shí)候?qū)?huì)出現(xiàn)明顯的限域效應(yīng),其光學(xué)性質(zhì)會(huì)隨著片徑尺寸大小發(fā)生變化[48],當(dāng)超過(guò)某上限后氧化石墨烯量子點(diǎn)的性質(zhì)相當(dāng)接近氧化石墨烯,這就提供了一種通過(guò)控制片徑尺寸分布改變氧化石墨烯量子點(diǎn)光響應(yīng)的手段。與GO類(lèi)似,這種pH依賴(lài)來(lái)源于自由型zigzag邊緣的質(zhì)子化或者去質(zhì)子化。同樣,這也可以解釋以GO為前驅(qū)體通過(guò)超聲-水熱法得到的石墨烯量子點(diǎn)的光發(fā)射性能,在藍(lán)光區(qū)域其光發(fā)射性能取決于zigzag邊緣狀態(tài),而綠色的熒光發(fā)射則來(lái)自于能級(jí)陷阱的無(wú)序狀態(tài)。通過(guò)控制氧化石墨烯量子點(diǎn)的氧化程度,可以控制其發(fā)光的波長(zhǎng)。這一類(lèi)量子點(diǎn)的光學(xué)性質(zhì)類(lèi)似于GO,這說(shuō)明只要片徑小于量子點(diǎn),都會(huì)產(chǎn)生同樣的光學(xué)效應(yīng),也就是在結(jié)構(gòu)上存在一個(gè)限域島狀SP2雜化的碳或者含氧基團(tuán)在功能化過(guò)程中引入的缺陷狀態(tài)。氧化石墨片層的厚度約為1.1 ± 0.2 nm。
在氧化石墨烯的納米孔道中,分布著氧化區(qū)域和納米sp2雜化碳區(qū)域,水分子在通過(guò)氧化區(qū)域時(shí)能夠與含氧官能團(tuán)形成氫鍵,從而增加了水流動(dòng)阻力,而在雜化碳區(qū)域水流阻力很小。芳香碳網(wǎng)中形成的大多數(shù)通路被含氧官能團(tuán)有效阻擋,從而分離海水中Na+和Cl-等小分子物質(zhì)12, 13。相比于其他納米材料,GO為快速水輸送提供了較多優(yōu)越性能,如光滑無(wú)摩擦的表面,超薄的厚度和超高的機(jī)械強(qiáng)度,所有這些特性都提高了水的滲透性。前超濾膜、納濾膜、反滲透膜等膜技術(shù),已經(jīng)成功地應(yīng)用到水處理的各個(gè)領(lǐng)域,引起越來(lái)越多的企業(yè)家和科學(xué)家的關(guān)注8-11。GO薄膜在海水淡化領(lǐng)域的應(yīng)用主要是去除海水中的鹽離子,探究GO薄膜的離子傳質(zhì)行為具有更為重要的實(shí)用意義。氧化石墨可以通過(guò)用強(qiáng)氧化劑來(lái)處理石墨來(lái)制備。無(wú)污染氧化石墨粉體
在用氧化還原法將石墨剝離為石墨烯的工業(yè)化生產(chǎn)過(guò)程中,得到的石墨烯微片富含多種含氧官能團(tuán)。浙江開(kāi)發(fā)氧化石墨
GO作為新型的二維結(jié)構(gòu)的納米材料,具有疏水性中間片層與親水性邊緣結(jié)構(gòu),特殊的結(jié)構(gòu)決定其優(yōu)異的特性。GO的活性主要有以下幾種機(jī)制:(1)機(jī)械破壞,包括物理穿刺或者切割;(2)氧化應(yīng)激引發(fā)的細(xì)菌/膜物質(zhì)破壞;(3)包覆導(dǎo)致的跨膜運(yùn)輸阻滯和(或)細(xì)菌生長(zhǎng)阻遏;(4)磷脂分子抽提理論。GO作用于細(xì)菌膜表面的殺菌機(jī)制中,主要是GO與起始分子反應(yīng)(Molecular Initiating Events,MIEs)[51]的作用(圖7.3),包括GO表面活性引發(fā)的磷脂過(guò)氧化,GO片層結(jié)構(gòu)對(duì)細(xì)菌膜的嵌入、包裹以及磷脂分子的提取,GO表面催化引發(fā)的活性自由基等。另外,GO的尺寸在上述不同的機(jī)制中對(duì)的影響也是不同的,機(jī)械破壞和磷脂分子抽提理論表明尺寸越大的GO, 能表現(xiàn)出更好的能力,而氧化應(yīng)激理論則認(rèn)為GO 尺寸越小,其效果越好。浙江開(kāi)發(fā)氧化石墨